Distributions of Random Variables

(ref: Rosenthal §6, Billingsley §20)

def: Given a random variable X defined on a probability space (Ω, \mathcal{F}, P), its distribution (or law) is the function μ defined on \mathcal{B} (Borel subsets of \mathbb{R}) by

$$\mu(B) = P(X \in B) = P(X^{-1}(B)) \text{ for } B \in \mathcal{B}.$$

Notation: If μ is the distribution of X, then

- $(\mathbb{R}, \mathcal{B}, \mu)$ is a valid probability space
- Sometimes write μ as $\mathcal{L}(X)$ for "law" of X
- Write $X \sim \mu$ for "μ is the distribution of $X"$
 or "X follows distribution μ"

def: The cumulative distribution function of a RV X

by $F_X(x) = P(X \leq x)$ for $x \in \mathbb{R}$.
Properties of CDF

- By continuity of probabilities, \(F_x \) is right-continuous:
 \[
 \text{i.e., if } \{ x_n \} \nearrow x \text{ then } F_x(x_n) \to F_x(x).
 \]

- \(F_x \) is a non-decreasing function of \(x \), with
 \[
 \lim_{x \to \infty} F_x(x) = 1 \quad \text{and} \quad \lim_{x \to -\infty} F_x(x) = 0
 \]

Prop: Let \(X \perp Y \) be two RVs (possibly defined on different prob. spaces). Then
\[
L_X(x) = L_Y(y) \iff F_x(x) = F_y(y) \quad \text{for } x \in \mathbb{R}.
\]

The following theorem shows that distributions completely specify the expected values of RVs (\& functions of them).

\[\text{Thm [Change of Variable Theorem]}:\]
Given a probability space \((\Omega, \mathcal{F}, P)\), let \(X \) be a RV having distribution \(\mu \). Then for any Borel-measurable function \(f: \mathbb{R} \to \mathbb{R} \), we have
\[
\int_{\Omega} f(X(w)) \, dP(w) = \int_{-\infty}^{\infty} f(t) \, d\mu(t)
\]
\[\text{Note: } \int_{\Omega} \text{ or } P(dw) \quad \text{or } \mu(dt) \]
i.e. \(E_P[f(X)] = E_{\mu}[f] \) provided that either side is defined.
In words,
the exp. value of RV \(f(X) \) w.r.t. the prob. measure \(P \)
on \(\Omega \) is equal to the exp. value of the function \(f \)
w.r.t. the measure \(\mu \) on \(\mathbb{R} \).

Cor: Let \(X \) & \(Y \) be 2 RVs (possibly defined on different prob. spaces). Then \(L(X) = L(Y) \) iff

\[
E[f(X)] = E[f(Y)] \quad \forall \text{ Borel-measurable functions } f: \mathbb{R} \to \mathbb{R}
\]

for which either expectation is well-defined.

Cor: If \(X \neq Y \) are RVs s.t. \(P(X = Y) = 1 \), then

\[
E[f(X)] = E[f(Y)] \quad \forall \text{ Borel-measurable functions } f: \mathbb{R} \to \mathbb{R}
\]

(If \(\mu = \mathcal{L}(X) = \mathcal{L}(Y) \), then \(E[f(X)] = E[f(Y)] = \int_{\mathbb{R}} f \, d\mu \)).

Proof [Change of Var. Thm]: First suppose that \(f = \mathbb{1}_B \) for \(B \in \mathcal{B} \).

Then

\[
\int_{\Omega} f(X(w)) \, dP(w) = \int_{\Omega} \mathbb{1}_{\{X(w) \in B\}} \, dP(w) = P(X \in B),
\]

while

\[
\int_{-\infty}^{\infty} f(t) \, d\mu(t) = \int_{-\infty}^{\infty} \mathbb{1}_{\{t \in B\}} \, d\mu(t) = \mu(B) = P(X \in B).
\]

Hence, equality holds in this case.
Now suppose that f is a non-neg. simple function. Then f is a finite positive linear combination of indicator functions. Both sides of (6.1.2) are linear functions of f, so equality holds in this case.

Next suppose that f is a general non-neg. Borel measurable function. Then we can find a sequence $\{f_n\}$ of non-neg. simple functions s.t. $\{f_n\} \uparrow f$. We know (by above argument) that (6.1.2) holds when f is replaced by f_n. Let $n \to \infty$ and then MCT \Rightarrow (6.1.2) holds for f as well.

Finally, for general Borel-meas. f, write $f = f^+ - f^-$. Since (6.1.2) holds for f^+ & f^- separately & since f is linear, it must also hold for f.

This proof method is widely used

- indicator functions
- non-neg. simple fun
- non-neg. general fun
- general fun

Examples of Distributions

Ex 1: RV X s.t. $P(X = c) = 1$ for some $c \in \mathbb{R}$

The distribution of X is the point mass δ_c

defined by $\delta_c(B) = \mathbb{1}_B(c)$

i.e. $\delta_c(B) = \begin{cases} 1 & \text{if } c \in B \\ 0 & \text{if } c \notin B \end{cases}$

Write $X \sim \delta_c$ or $\mathbb{L}(X) = \delta_c$

$E[X] = E[c] = c$

In general, $E[f(X)] = f(c)$ for any function f.

$$\int_{\Omega} f(X(\omega)) \, dP(\omega) \equiv \int_{\mathbb{R}} f(t) \, d\delta_c(t) = f(c)$$

by change of variable Thm

Note: The mapping $f \mapsto E[f(X)]$ is known as an evaluation map. Why?

Because $E[f(X)] = f(c)$

eval. f at c
Ex 2: Suppose RV X has the Poisson ($\lambda = 5$) distribution.

$$P(X \in A) = \sum_{k \in A} \frac{e^{-5}}{5^k k!} \quad \Rightarrow \quad L(X) = \sum_{k=0}^{\infty} \left(\frac{e^{-5}}{5^k k!} \right) \delta_k$$

This distribution is a convex combination of point masses.

Then

$$E[f(X)] = \sum_{k=0}^{\infty} f(k) \left(\frac{e^{-5}}{5^k k!} \right) \delta_k$$

for any function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Prop 6.2.1: Suppose $\mu = \sum_{i} \beta_i \mu_i$ where $\sum \mu_i$ are probability distributions and β_i are non-negative constants (summing to 1, if we want μ to also be a probability dist'n).

Then for Borel-measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$\int f \, d\mu = \sum_{i} \beta_i \int f \, d\mu_i$$

provided either side is well-defined.

Ex 3: Suppose RV X has the Normal (0,1) distribution.

$$(X \sim N(0,1))$$

Distribution of X:

$$\mu_X(B) = \int_{-\infty}^{\infty} \phi(t) \mathbb{1}_B(t) \, d\lambda(t) \quad \text{for} \quad B \in B$$

$\lambda = \text{Lebesgue meas}$ on \mathbb{R}

$\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$