Cor 11.1.7 [Fourier Uniqueness Thm]: Let $X \neq Y$ be RVs.

Then $\phi_X(t) = \phi_Y(t) \forall t \in \mathbb{R}$ iff $L(X) = L(Y)$.

(i.e. iff $X \neq Y$ have the same distribution).

PF: (\implies) Suppose $\phi_X(t) = \phi_Y(t) \forall t \in \mathbb{R}$. Then (by Inversion Thm)

$$P(a \leq X \leq b) = P(a \leq Y \leq b)$$
provided that

$$P(X = a) = P(X = b) = P(Y = a) = P(Y = b) = 0,$$

i.e. for all but countably many choices for $a \neq b$.

Now take limits and use continuity of probabilities:

$$\implies P(X \in I) = P(Y \in I) \text{ for all intervals } I \subseteq \mathbb{R}.$$

It follows from Prop 2.5.8 (uniqueness of extensions of prob. meas.)

that $L(X) = L(Y)$.

(\impliedby) Conversely, suppose $L(X) = L(Y)$. Then

$$E[e^{itX}] = E[e^{itY}] \text{ by Cor 6.1.3},$$

$$\implies \phi_X(t) = \phi_Y(t) \forall t \in \mathbb{R}$$

by definition.

$$E[f(X)] = E[f(Y)] \forall \text{ Borel-meas } f: \mathbb{R} \to \mathbb{R} \text{ s.t. exp. value is well-defined}.$$
Need further results in order to prove the continuity theorem.

Lemma II.1.8 [Helly Selection Principle]: Let \(\{F_n\} \) be a sequence of CDFs \(F_n(x) = \mu_n((-\infty, x]) \) for some probability distribution \(\mu_n \). Then there is a subsequence \(\{F_{n_k}\} \) and a non-decreasing right-continuous function \(F \) with \(0 \leq F \leq 1 \) s.t. \(\lim_{k \to \infty} F_{n_k}(x) = F(x) \) \(\forall x \in \mathbb{R} \) s.t. \(F \) is continuous at \(x \).

[pf: SKIP]

Note: This lemma does ensure that
\[
\lim_{x \to \infty} F(x) = 1 \quad \text{or} \quad \lim_{x \to -\infty} F(x) = 0 \quad (\text{as we'd expect from a CDF})
\]

To get around this, define a new term: **tight**

def: A collection \(\{\mu_n\} \) of probability measures on \(\mathbb{R} \) is \underline{tight} if \(\forall \varepsilon > 0 \), \(\exists a < b \) with \(\mu_n([a,b]) \geq 1 - \varepsilon \) \(\forall n \).

In words, all of the measures have "most" of their mass attributed to the same finite interval \([a,b]\). Mass does not escape off to \(\infty \).
Example: Let \(\mu_n = \delta_{n \mod 3} \) — point mass at \(n \mod 3 \).

i.e. \(\mu_1 = \delta_1 \)
\(\mu_2 = \delta_2 \) \{ repeats \}
\(\mu_3 = \delta_0 \)
\(\mu_4 = \delta_1 \)
\(\mu_5 = \delta_2 \)
\(\mu_6 = \delta_0 \)

Q. Is \(\mu_n \) tight?

Yes. Take \([a,b] = [0,1] \).

Then \(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \),
\[\mu_n ([0,1]) = \delta_n ([0,1]) \mod 3 \]
\[= \frac{1} {2} \mathbb{1}_{[0,1]} (n) \]
\[= 1 > 1 - \varepsilon. \]

Example: For \(n \geq 1 \), let \(X_n \sim \text{Uniform} (a_n, 2 + a_n) \)

where \(a_n = (-1)^n \). Then

\(X_1 = U(-1, 2 - 1 = 1) \) so \(|X_1| \leq 1 \)
\(X_2 = U(1, 2 + 1 = 3) \) so \(|X_2| \leq 3 \)
\(X_3 = U(-1, 1) \)
\(X_4 = U(1, 3) \)
\[\Rightarrow |X_n| \leq 3 \ \forall n \in \mathbb{N} \]

\[\Rightarrow \sup_{n \geq 1} P(|X_n| > 3) < \varepsilon \ \forall \varepsilon > 0 \]

\[\Rightarrow \text{seq. of prob. distns of } \{X_n\} \text{ is tight} \]
Properties

- Any finite collection of probability measures is tight.
- Union of 2 tight collections of prob. meas. is tight.
- Any sub-collection of a tight collection is tight.

Thm 11.1.10: If \(\{\mu_n\} \) is a tight sequence of probability measures, then there is a subsequence \(\{\mu_{n_k}\} \) of a prob. measure \(\mu \) s.t. \(\mu_n \to \mu \) as \(n \to \infty \).

i.e. \(\{\mu_n\} \) converges weakly to \(\mu \)

PF Idea: By Helly Selection Principle, \(\exists F_{n_k} \preceq F \) s.t.

\[F_{n_k}(x) \to F(x) \] at all continuity points of \(F \).

Using tightness, can show that \(F \) is actually a prob. distribution function (i.e., in particular \(\lim_{x \to \infty} F(x) = 1 \), \(\lim_{x \to -\infty} F(x) = 0 \), as desired).

Cor 11.1.11: Let \(\{\mu_n\} \) be a tight seq. of prob. dists on \(\mathbb{R} \). Suppose that \(\mu \) is the only possible weak limit of \(\{\mu_n\} \), meaning \(\mu_{n_k} \to \nu \) implies that \(\nu = \mu \).

Then \(\mu_n \to \mu \) as \(n \to \infty \).
One last result: sufficient condition for a sequence of measures to be tight

Lemma 11.1.13: Let \{μₙ\} be a sequence of prob. measures on \(\mathbb{R}\) with characteristic functions \(φₙ(t) = \int e^{itx} \, dμₙ(x)\).

Suppose \(g\) is a function \(g\) (continuous at 0) such that \(\lim_{n \to \infty} φₙ(t) = g(t)\) for each \(|t| < t₀\) for some \(t₀ > 0\). Then \(\{μₙ\}\) is tight.

Theorem 11.1.14 [Continuity Thm]: Let \(μ, μ₁, μ₂, \ldots\) be prob. measures with corresponding characteristic functions \(φ, φ₁, φ₂, \ldots\).

Then \(μₙ \Rightarrow μ\) iff \(φₙ(t) \to φ(t)\) for all \(t \in \mathbb{R}\).

In words: prob. measures converge weakly to \(μ\) iff their char. functions converge pointwise to that of \(μ\).

Pf: First suppose that \(μₙ \Rightarrow μ\) as \(n \to \infty\). Then since \(\cos(tx)\) and \(\sin(tx)\) are bounded continuous functions, we have that

\[
φₙ(t) = \int \cos(tx) \, dμₙ(x) + i \int \sin(tx) \, dμₙ(x)
\]

\[
\to \int \cos(tx) \, dμ(x) + i \int \sin(tx) \, dμ(x)
\]

\[
= φ(x) \quad \text{as } n \to \infty \quad \text{for each } t \in \mathbb{R}
\]
Conversely, suppose that $\phi_n(t) \to \phi(t)$ for each $t \in \mathbb{R}$. Then by using $g = \phi$ in Lemma 11.1.13, the μ_{n_k} are tight. Now suppose that $\mu_{n_k} \Rightarrow \nu$ for some subsequence μ_{n_k} of some measure ν. Then

$$\phi_{n_k}(t) \to \phi_{\nu}(t) \quad \forall t \in \mathbb{R}$$

where $\phi_{\nu}(t) = \int e^{itx} d\nu(x)$.

On the other hand, we know that (by assumption)

$$\phi_{n_k}(t) \to \phi(t) \quad \forall t \in \mathbb{R}.$$

Hence, $\phi_{\nu} = \phi$. By Fourier uniqueness (Cor 11.1.7), this implies that $\nu = \mu$.

Thus, μ is the only possible weak limit of μ_{n_k} so by Cor 11.1.11, it follows that $\mu_n \Rightarrow \mu$ as $n \to \infty$. \[\square\]
At def of "tight" measure: \(\forall \varepsilon > 0 \exists M(\varepsilon, x) \ni \sup_{n \geq 1} \mu_n([E, M]) < \varepsilon \)

Ex 1. Let \(\mu_n \) be the \(\delta \) at \(n \mod 3 \) so it rotates through \(S_1, S_2, S_3 \), etc. Is it tight? Yes — we can define a finite interval \(t \) over which all the mass on it takes \(\gamma \), and \(\forall \varepsilon, \mu_n([0, 2]) = 1 \geq 1 - \varepsilon \)

Ex 2. For \(n \in \mathbb{N} \), let \(X_n \sim \text{Unif}(a_n, 2 + a_n) \) where \(a_n = (-1)^n \)

Lemma 1.1.13

For \(x \in \mathbb{R} \), let \(\mu_n \) be \(\text{Unif}(\frac{(-1, 1)}{2}) \) for \(n \) odd and \(\text{Unif}(1, 3) \) for \(n \) even.

```
\[ \sup \mu_n(\mathbb{R}) = 0 < \varepsilon \]
```

One last result: sufficient condition for \(\{ \mu_n \} \) to be tight: \(\text{Lemma 11.1.14} \)

For \(\mu \) an \(\mu \)-finite, \(\mu \)-continuous \(f \) \(\text{vanishing at } 0 \), \(\forall \varepsilon \), we have

(3) \(\text{such that } \lim_{n \to \infty} \mu_n(\mathbb{R}) = g(\mathbb{R}) \), then \(\mu_n \) is tight.

Theorem 11.1.14

Continuity Theorem:

Let \(\mu_1, \mu_2, \mu_3, \ldots \) be the product of measures \(\{ f, f_1, f_2, \ldots \} \)

then \(\mu_n \Rightarrow \mu \) iff \(\mu_n(t) \to \mu(t) \)

Weaker convergence (pointwise)

(i.e. in law)

Proof: \(\mu \to \mu \); then since \(cos(tx), sin(tx) \) are bounded & continuous, we have

\[\mu_n(\mathbb{R}) = \int e^{itx} \, d\mu_n(x) \to \int e^{itx} \, d\mu(x) \]

(by Fourier Uniqueness Theorem)

Conversely, \(\mu_n(t) \to \mu(t) \) (pointwise); then using \(g = g \) in Lemma 11.1.13, we know the \(\mu_n \) are tight. Now suppose \(\mu_{n_k} \Rightarrow \mu \) for some measure \(\mu \), then

\[\mu_{n_k}(t) \to \mu(t) \quad \forall t \in \mathbb{R} \]

We know \(\mu_{n_k}(t) \to \mu(t) \), hence \(\mu = \mu \)

By inverse uniqueness \(\mu_{n_k} \), we get \(\mu = \mu \), and \(\mu \) is unique (weak) limit of \(\mu_n \); so by (11.1.11), \(\mu_n \Rightarrow \mu \)