Renewal Theory

[Ref: Models Ch. 7]

Recall: A Poisson process is a counting process for which the times between successive events are i.i.d. exponential RVs.

- One generalization is to consider a counting process for which the times between successive events are i.i.d. with an arbitrary distribution.

- Such a counting process is called a renewal process.

def: Let \{N(t) : t \geq 0\} be a counting process if let \(X_n\) be the time between the \((n-1)\)st and \(n\)th event, \(n \geq 1\). If the sequence \(\{X_1, X_2, \ldots\}\) is i.i.d., then the counting process \{N(t) : t \geq 0\} is called a renewal process.

* When an event occurs, we say a renewal has taken place. Process starts itself over.
Example: Replacement of lightbulbs

Suppose we have an infinite supply of lightbulbs whose lifetimes are i.i.d.

We use a single lightbulb at a time, and when it fails, we immediately replace it with a new one.

\(\{N(t) : t \geq 0\} \) is a renewal process when

\[N(t) = \# \text{ of lightbulbs that have failed by time } t. \]

Event = failure of lightbulb

Renewal Process \(\rightarrow \) replace bulb immediately upon failure

Inter-event Time = lifetime of a bulb

* Each event starts the process over with identical condition (aka "renewal")

\[S_0 = 0 \]
\[S_n = \sum_{i=1}^{n} X_i, \ n \geq 1 \]

/ \ waiting time until the \(n^{th} \) event (renewal)

\[X_1 \]
\[X_2 \]
\[X_3 \]

0 \(\rightarrow \)

\(S_1 \)
\(S_2 \)
\(S_3 \)

time

time of 1st renewal = \(X_1 \)
time of 2nd renewal = \(X_1 + X_2 \)
Let F denote the interarrival distribution ($X_i \sim F$).

Let $\mu = E[X_n]$ - mean time b/t successive renewals

- By the strong law of large numbers,
 \[
 \frac{S_n}{n} \to \mu \quad \text{as} \quad n \to \infty
 \] (where S_n is the time of n^{th} renewal)
 with probability 1

- $N(t) = \max \left\{ n : S_n \leq t \right\}$

- $N(t)$ is finite for each t (with prob. 1)

- $N(\infty) = \text{total \# of renewals} = \infty$ (with prob. 1)

 \[
 \left(\lim_{n \to \infty} N(t) \right)
 \]

Relationship Between $N(t)$ and S_n

\[
N(t) \geq n \iff S_n \leq t
\]

\[
\begin{array}{c|c|c}
\text{\# of renewals} & \text{time of } n^{th} \text{ renewal} \\
\text{by time } t \geq n & \leq t
\end{array}
\]
\[P(N(t) = n) = P(N(t) \geq n) - P(N(t) \geq n+1) \]

\[= P(S_n \leq t) - P(S_{n+1} \leq t) \]

allows us to compute the distribution of \(N(t) \) from the distn of \(X_i \)'s

\[\text{Mean Value of } N(t) \]

\[E[N(t)] = \sum_{n=1}^{\infty} n \, P(N(t) = n) = \sum_{n=1}^{\infty} P(N(t) \geq n) \]

\[= \sum_{n=1}^{\infty} P(S_n \leq t), \]

\[\uparrow \quad \text{definition} \]

\[\uparrow \quad \text{Alternative formula for integer-valued RVs} \ (\geq 0) \]

\[\text{Def: The mean-value function or renewal function of a renewal process is} \]

\[m(t) = \sum_{n=1}^{\infty} P(S_n \leq t) \]

Notes:
1. \(m(t) \) uniquely determines the renewal process, \(\{N(t)\} \not\perp X_i \)'s.
2. \(\{N(t)\} \) as a Poisson process

\[\Rightarrow m(t) = \lambda t = \frac{t}{\mu} \text{ where } \mu = \frac{1}{\lambda} = E[X_i] \]
Thus, (by (1) above) the Poisson process is the only renewal process having a linear mean-value function.

\[m(t) = \lambda t \quad \text{linear function of } t \]

Renewal Equation

(continuous)

\[X_i \text{ - interarrival times, PDF } f \text{ and CDF } F \]

\(\{ N(t) : t \geq 0 \} \) - corresponding renewal process with renewal function \(m(t) = E[N(t)] \)

\[m(t) = F(t) + \int_0^t m(t-x) f(x) \, dx \]

This is the renewal equation

(often used to obtain \(m(t) \))

Details: Condition on time of 1st renewal

\[m(t) = E[N(t)] = \int_0^\infty E[N(t) \mid X_1 = x] f(x) \, dx \]

2 cases:

\[\begin{cases} x \leq t & \Rightarrow N(t) > 1 \\ x > t & \Rightarrow N(t) = 0 \end{cases} \]
Then, \[E[N(t) \mid X_1 = x] = 1 + E[N(t-x)] \] if \(x \leq t \)
\[E[N(t) \mid X_1 = x] = 0 \] if \(x > t \)

\[m(t) = \int_0^t E[N(t) \mid X_1 = x] f(x) \, dx \]

\[= \int_0^t \left[1 + E[N(t-x)] \right] f(x) \, dx \]
\[= \int_0^t f(x) \, dx + \int_0^t m(t-x) f(x) \, dx \]
\[= F(t) + \int_0^t m(t-x) f(x) \, dx \]
\[\text{by def} \]

Example: \(X_i \sim \text{Uniform}(0,1) \)

One instance in which the renewal eqn may be solved: interarrival distn \(\sim U(0,1) \)

\[m(t) = e^t - 1 \] for \(0 \leq t \leq 1 \)

(see book for details!)
Limit Theorems

We saw that, with probability 1,\[N(t) \to \infty \text{ as } t \to \infty \]

Q. How fast does this happen?
(At what rate does \(N(t) \) go to \(\infty \)?)
\[\lim_{t \to \infty} \frac{N(t)}{t} \ ? \]

- For a Poisson process \(\{N(t) : t \geq 0\} \),
 \[E[N(t)] = m(t) = \lambda t = \frac{t}{\mu} \text{ where } \mu = \frac{1}{\lambda} = E[X_1] \]
 \(X_i \)'s \sim \exp(\lambda) \]

\[\frac{N(t)}{t} \to \lambda = \frac{1}{\mu} \text{ a.s. as } t \to \infty \]

\[\left(\text{Note: } E\left[\frac{N(t)}{t} \right] = \frac{\lambda t}{t} = \lambda \right) \]

- This is true in general for a renewal process!

\[\frac{N(t)}{t} \overset{\text{a.s.}}{\to} \frac{1}{\mu} \text{ as } t \to \infty \]

where \(\mu = E[X_1] \)
and \(X_i \)'s \ i.i.d.
Proof: See details in §7.3 (Models Book)