Note: There also exist uncountable sets with Lebesgue measure 0.

Simplest Example: Cantor Set K

Begin with $[0,1]$. Then remove the open interval $(\frac{1}{3}, \frac{2}{3})$.

Continue removing the open middle intervals of these 2 pieces, etc.

The complement of the Cantor set K^c has Leb. meas. $= 1$

$$\lambda(K^c) = \frac{1}{3} + 2\left(\frac{1}{9}\right) + 4\left(\frac{1}{27}\right) + \ldots$$

$$= \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 1.$$
Thus, since \(P(A) = 1 - P(A^c) \), we have

\[
P(K) = 1 - P(K^c) = 1 - 1 = 0.
\]

\(K \) is uncountable (see justification in Rosenthal).

Extensions of the Extension Thm

Uniqueness Property:

Prop: Let \(J, P, P^* \) and \(M \) be as in the extension theorem. Let \(\mathcal{F} \) be any \(\sigma \)-algebra with \(J \subseteq \mathcal{F} \subseteq M \) (e.g. \(\mathcal{F} = M \) or \(\mathcal{F} = \sigma(J) \)).

Let \(Q \) be any probability measure on \(\mathcal{F} \) s.t. \(Q(A) = P(A) \) \(\forall A \in J \).

Then \(Q(A) = P^*(A) \) \(\forall A \in \mathcal{F} \).

Useful special case: \(\mathcal{F} = \mathcal{B} \) - Borel subsets of \(\mathbb{R} \) (or of \([0,1]\))
Random Variables

(ref §5, Rosenthal §3) Although Billingsley focuses on simple RVs, those with finite range.

Main Idea: If we think of \(\Omega \) as the set of all possible random outcomes of an experiment, then a random variable assigns a numerical value to these outcomes.

def: Given a probability triple (prob. space) \((\Omega, \mathcal{F}, P)\), a simple random variable is a function \(X \) from \(\Omega \) to \(\mathbb{R} \) such that

\[\{ \omega \in \Omega : X(\omega) = x \} \in \mathcal{F}, \quad x \in \mathbb{R}. \]

In other words, the function \(X \) must be measurable.

Could also write:

\[\{ X = x \} \in \mathcal{F}, \quad \forall x \in \mathbb{R} \]

\[X^{-1}(\{ x \}) \in \mathcal{F}, \quad \forall x \in \mathbb{R} \]

For general RV (not necessarily simple):

\[\left\{ X \in B \right\} \in \mathcal{F}, \text{ for every Borel set } B \]

\[X^{-1}(B) \in \mathcal{F}, \text{ for every Borel set } B \]
Note: Not all functions from Ω to \mathbb{R} are RVs.

Example: Let (Ω, \mathcal{F}, P) be Lebesgue measure on $[0,1]$, and let $H \subseteq \Omega$ be the non-measurable set from Lecture 1 (uses equiv. classes & shift operator). Define $X: \Omega \to \mathbb{R}$ by $X = 1_H$, so
\[
\begin{cases}
X(\omega) = 0 & \text{for } \omega \in H \\
X(\omega) = 1 & \text{for } \omega \not\in H.
\end{cases}
\]

Then $\{\omega \in \Omega : X(\omega) = \frac{1}{2}\} = H$ but $H \not\in \mathcal{F}$, so X is not a RV.

Proposition: Given (Ω, \mathcal{F}, P).

(i) If $X = 1_A$ is the indicator function of some event $A \in \mathcal{F}$, then X is a random variable.

(ii) If $X \leq Y$ are RVs and $c \in \mathbb{R}$, then
\[
\{X + c, X + Y, cX, XY, X^2\}
\]
are all RVs.

(iii) If Z_1, Z_2, \ldots are RVs s.t. $\lim_{n \to \infty} Z_n(\omega)$ exists for each $\omega \in \Omega$ and $Z(\omega) = \lim_{n \to \infty} Z_n(\omega)$, then Z is also a RV.
More details on Random Variables

Def: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A real-valued function X on Ω is a random variable if

$$\{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F} \quad \text{for each } B \in \mathcal{B},$$

short hand is

$$\{x \in B\} \quad \text{or } X^{-1}(B) \in \mathcal{F} \quad \text{Borel sets}$$

Note: We are interested in the probability that X is a member of B for each Borel set B, i.e.

$$P(\{\omega \in \Omega : X(\omega) \in B\}) = P(\{x \in \mathbb{R} \mid X(x) \in B\}) = P(x \in B)$$

But for this probability to exist, $\{x \in \mathbb{R} \mid X(x) \in B\}$ must be an event.

Hence the defn of RV above.

Remark: Recall that a real-valued function f on Ω is \mathcal{F}-measurable iff $f^{-1}(B) \in \mathcal{F}$ for each $B \in \mathcal{B}$.

Thus, random variables are just \mathcal{F}-measurable functions.
Measurability of a function depends only on the \(\sigma \)-algebra \(\mathfrak{F} \) and not on the prob. measure \(P \).

One of the most important quantities associated with a RV is its **probability distribution**.

def: Let \(X \) be a RV on the probability space \((\Omega, \mathfrak{F}, P)\). Then the **probability distribution** of \(X \), denoted \(\mu_X \), is the set function on \(\mathcal{B} \) defined by

\[
\mu_X(B) = P(X \in B), \text{ for } B \in \mathcal{B}.
\]

* e.g. PMF for discrete RV
* e.g. PDF for continuous RV

def: **Probability distribution function** (aka CDF) of \(X \):

\[
F_X(x) = P(X \leq x), \quad \forall x \in \mathbb{R}
\]
Pf: (i) If $X = 1_A$, for $A \in \mathcal{A}$, then for any subset $B \in \mathcal{A}$, $X^{-1}(B)$ must be one of the following: A, A^c, \emptyset, or Ω. Hence $X^{-1}(B) \in \mathcal{A}$.

(See Rosenthal for remaining proofs!)

Suppose now that X is a RV and $f: \mathbb{R} \to \mathbb{R}$ is a function which is Borel-measurable, meaning that $f^{-1}(A) \in \mathcal{B}$ for any $A \in \mathcal{B}$ where $\mathcal{B} = \text{collection of Borel sets of } \mathbb{R}$.

[Equivalently, f is a RV corresponding to $\Omega = \mathbb{R}$ and $\mathcal{A} = \mathcal{B}$]

Define a new RV $f(X)$ by

\[
\begin{align*}
 f(X)(\omega) &= f(X(\omega)) \\
 \quad \uparrow \\
 \text{the composition} \\
 \text{of } X \text{ with } f
\end{align*}
\]

for each $\omega \in \Omega$.

Note: this is well-defined since for $B \in \mathcal{B}$,

\[
\{f(X) \in B\} = \{X \in f^{-1}(B)\} \in \mathcal{A}
\]
Prop: If f is a continuous function, or a piecewise-continuous function, then f is Borel-measurable.

Pf: A basic result of point-set topology says:
if f is continuous, then $f^{-1}(O)$ is an open subset of \mathbb{R} whenever O is. In particular,
$f^{-1}((x,\infty))$ is open, so $f^{-1}((x,\infty)) \in B$, so $f^{-1}([\infty,x)) \in B$.

If f is piecewise-contin. / then we can write

$$f = f_1 1_{I_1} + f_2 1_{I_2} + \ldots + f_n 1_{I_n}$$

where f_j's are continuous and the $\{I_j\}$ are disjoint intervals. It follows from above & prev. prop. (3.1.5) that f is B-measurable.

Example: $f(x) = x^k$ for $k \in \mathbb{N}$

f is Borel-measurable.
Thus if X is a RV, then so is $X^k \forall k \in \mathbb{N}$.