Quick note on HW 2 - CLT questions

To plot the normal density curve on top of the histogram of sample means, note that you need the std. deviation of the sample mean which is \(\frac{\sigma}{\sqrt{n}} \)

Recall:

\[
E[\bar{X}_n] = \mu \quad \text{where} \quad \mu = E[X_i]
\]

\[
\text{Var}[\bar{X}_n] = \frac{\sigma^2}{n} \quad \sigma^2 = \text{Var}[X_i]
\]

\[\Rightarrow \text{std. dev. of } \bar{X}_n = \sqrt{\text{Var}(\bar{X}_n)} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}\]

Recall Uniform Distribution

\(U \sim U(0,1) \)

PDF of \(U \): \(f(x) = 1 \) for \(0 \leq x \leq 1 \)

CDF of \(U \): \(F(x) = x \) for \(0 \leq x \leq 1 \)

\(E[U] = \frac{1}{2} \)

\(\text{Var}(U) = \frac{1}{12} \)

Recall Inverse Transform Method

From previous lecture: generate \(U \sim U(0,1) \), then generate

\(X = F^{-1}(U) \) RV with distribution \(F \)
Example 1: Generate an exponential random variable with rate 1 (i.e. parameter $\lambda = 1$).

Distribution function: $F(x) = 1 - e^{-\lambda x} = 1 - e^{-x}$ (for $x > 0$)

Let $x = F^{-1}(u)$. Then

$u = F(x) = 1 - e^{-x}$

$\Rightarrow 1 - u = e^{-x}$

$\Rightarrow \log(1 - u) = \log(e^{-x}) = -x$

$\Rightarrow x = -\log(1 - u)$

Thus, we can define RV X as

$X = F^{-1}(U) = -\log(1-U)$

However, $1-U$ is also uniformly distributed on $(0,1)$ so

$-\log(1-U) \overset{D}{=} -\log(U)$ \hspace{1cm} \text{same distribution}

Thus, it suffices to define X s.t.

$X = -\log(U)$ \hspace{1cm} \text{where } U \sim \text{Unif}(0,1)$

More generally, $X \sim \exp(\lambda)$ can be generated by setting

$X = -\frac{1}{\lambda} \log(U)$ \hspace{1cm} E[X] = $\frac{1}{\lambda}$ where λ = rate parameter
Example 2: Generate a gamma \((r, \lambda)\) random variable.

Recall that if \(X_1, X_2, \ldots, X_r\) are i.i.d. exponential RVs with rate \(\lambda\), then

\[X = X_1 + X_2 + \ldots + X_r \sim \text{gamma}(r, \lambda) \]

In R, generate an \(r\)-dim uniform random vector

\[U = \text{runif}(r, 0, 1) \]

Then

\[X = \left(-\frac{1}{\lambda}\right) \cdot \sum \left(\log(U)\right) \]

(i.e. \(X = -\frac{1}{\lambda} \sum_{i=1}^{r} \log(U_i)\))

Go to R practice: inverse-transform-sims-continuous, \(r\) on website.
Rejection Method

Q. How to simulate a random variate from CDF F when there is no convenient formula for F?

For example, Normal distribution

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \, dy$$

Difficult to take F^{-1}!!

Rejection Method is based on $f = F'$ (density function)

- Suppose X is a continuous RV with PDF f
- Suppose Y is a continuous RV with PDF g
 and
 $$\frac{f(y)}{g(y)} \leq c \text{ for all } y$$

- Suppose we know how to generate a variate from PDF g. Then use the following steps to generate a random variate from f.

Step 1: Generate $Y \sim g$ and $U \sim U(0,1)$ [Y \& U indep.]

Step 2: If $U \leq \frac{f(Y)}{c \cdot g(Y)}$, set $X = Y$. Otherwise go back to Step 1.
Accept the generated value with a probability proportional to \(\frac{f(Y)}{g(Y)} \).

Then RV \(X \) has density \(f \).

Application - Monte Carlo Methods

One of earliest applications of random numbers was to compute (approx.) integrals.

1. Let \(g(x) \) be a function and compute \(\Theta \) where

\[
\Theta = \int_{0}^{1} g(x) \, dx
\]

Note that if \(U \sim U(0,1) \), then we can express \(\Theta \) as

\[
\Theta = E[g(U)]
\]

If \(U_1, \ldots, U_n \) are i.i.d. \(U(0,1) \) RVs, then

\(g(U_1), \ldots, g(U_n) \) are i.i.d. RVs with mean \(\Theta \).

\[
\frac{1}{n} \sum_{i=1}^{n} g(U_i) \to E[g(U)] = \Theta \quad \text{as} \quad n \to \infty
\]

SLLN (with probability 1)

Monte Carlo Approach: Approximate \(\Theta \) by generating large # of random numbers \(U_i \) and taking the average value of \(g(U_i) \).
2. More generally, approximate $P(X \in A)$ by simulating random variates X_1, X_2, \ldots, X_n from the distribution of X and computing the ratio:

$$\frac{\text{# of } X_i \text{'s } \in A}{n}$$

3. Approximate (multidim. setting) by generating n k-dimensional vectors (i.i.d. Uniforms)

$$(U_1^1, U_2^1, \ldots, U_k^1)$$
$$(U_1^2, U_2^2, \ldots, U_k^2)$$
$${\hspace{1cm}}$$
$$(U_1^n, \ldots, U_k^n)$$

and then since $g(U_1^i, U_2^i, \ldots, U_k^i)$ are i.i.d. with mean Θ, we can estimate Θ by computing

$$\frac{1}{n} \sum_{i=1}^{n} g(U_1^i, U_2^i, \ldots, U_k^i).$$