Due on Thursday November 9 at the beginning of lecture. Problems are from the Probability Models book (same numbering in both the 10th and 11th editions).

1. Chapter 5, Problem 56
2. Chapter 5, Problem 57
3. Simulate a nonhomogeneous Poisson process with intensity function
 \[\lambda(t) = 1 + 5(1 + \sin(\pi t)). \]
 (a) Generate a sample path and include a figure for the interval \([0,10]\).
 (b) Compute the average value of \(\lambda(t)\) over \([0,10]\) and simulate a **homogeneous** Poisson process with this average rate.
 (c) Generate a sample path of the HPP to compare with the NHPP version above (include a figure).
 (d) Briefly discuss your observations.
4. Let \(N(t)\) be a Poisson process with rate \(\lambda\), and let \(Y_1, Y_2, \ldots\) be \(i.i.d\). random variables with mean \(\mu\) and variance \(\sigma^2\). Derive the mean and the variance of the compound Poisson random variable
 \[Z(t) = \sum_{i=1}^{N(t)} Y_i. \]
5. Give an example of a compound Poisson process \(\{Z(t) : t \geq 0\}\) where \(Z(t)\) is defined as in Problem 3. Make sure to explain what \(N(t), Y_i\) and \(Z(t)\) stand for in the example.
6. Write an algorithm in R to simulate a linear birth and death process such that the total birth rate is \(\lambda_i = i\lambda\) and the total death rate is \(\mu_i = i\mu\). Use \(\lambda = 1, \mu = 0.5\), and start with 100 individuals in the population.
 (a) Generate three sample paths of the process and include a figure (for time interval \([0,100]\)).
 (b) What happens if the death rate is increased to \(\mu = 2\)? Include another figure with three sample paths for this case.
 (c) Briefly describe your observations of the processes in (a) and (b).
 (d) **BONUS:** Modify the algorithm above to include immigration at an exponential rate \(\theta\). Generate sample paths for 3 different values of \(\theta\), include R code, parameter values, and a figure.

Include your R code along with the answers to the items listed above.