Multivariate Gaussian Random Variables

M. Sami Fadali
Professor of Electrical Engineering
University of Nevada, Reno
Outline

• Multivariate Gaussian random variables.
• Jointly Gaussian random vectors.
• Gaussian density function.
• Minimum variance estimator (another derivation).
• Orthogonality principle.
• Measurement residuals (innovations).
Multivariate Normal

\[x \sim N(m_x, C_x) \]

- Mean Vector and Covariance Matrix

 \[m_x = E(x) \]

 \[C_x = E((x - m_x)(x - m_x)^T) \]

- Probability density function

 \[f_x(x) = \frac{1}{[2\pi]^{n/2} \sqrt{\det(C_x)}} e^{-\frac{1}{2}(x-m_x)^T C_x^{-1}(x-m_x)} \]
Properties of Multivariate Gaussian Random Variables

1. Completely characterized by the first two moments \((m_x, C_x)\).
2. Independent \(\iff \) uncorrelated.
3. Linear transformation of Gaussian random vector (vector of jointly Gaussian random variables) gives a Gaussian random vector.
Properties

• If x and z are jointly Gaussian then they are marginally Gaussian

\[f_{xz} \text{ Gaussian } \Rightarrow f_x \text{ & } f_z \text{ Gaussian} \]

• If x and z are marginally Gaussian and mutually uncorrelated (independent) then they are jointly Gaussian.

• If x and z are marginally Gaussian but not mutually uncorrelated then they may or may not be jointly Gaussian.
Jointly Gaussian Random Vectors

\[x \in \mathbb{R}^n \sim \mathcal{N}(\mathbf{m}_x, C_x), \quad z \in \mathbb{R}^m \sim \mathcal{N}(\mathbf{m}_z, C_z) \]

\[C_{xz} = E\{ (x - m_x)(z - m_z)^T \} \]

\[C_{zx} = E\{ (z - m_z)(x - m_x)^T \} = C_{zx}^T \]

\[\bar{z} = col\{x, z\}, \quad m_{\bar{z}} = col\{m_x, m_z\} \]

\[C_{\bar{z}} = \begin{bmatrix} C_x & C_{xz} \\ C_{zx} & C_z \end{bmatrix} \]

\[f_{\bar{z}}(\bar{z}) = \frac{1}{[2\pi]^{(n+m)/2} \sqrt{\det(C_{\bar{z}})}} e^{-\frac{1}{2}((\bar{z} - m_{\bar{z}})^T C_{\bar{z}}^{-1} (\bar{z} - m_{\bar{z}}))} \]
Covariance $C_{\bar{Z}}$ Properties

$$C_{\bar{Z}}^{-1} = \begin{bmatrix} C_x & C_{xz} \\ C_{zx} & C_z \end{bmatrix}^{-1} = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

• Use inverse of partitioned matrix and the matrix inversion lemma

$$A = \left(C_x - C_{xz} C_z^{-1} C_{zx} \right)^{-1}$$

$$= C_x^{-1} + C_x^{-1} C_{xz} C C_{zx} C_x^{-1}$$

$$B = -A C_{xz} C_z^{-1} = -C_x^{-1} C_{xz} C$$

$$C = \left(C_z - C_{zx} C_x^{-1} C_{xz} \right)^{-1}$$

$$= C_z^{-1} + C_z^{-1} C_{zx} A C_{xz} C_z^{-1}$$
Conditional Density Function

Theorem 1: For x, z jointly Gaussian

$$f_{x|z}(x|z) = f_{xz}(x, z)/f_z(z)$$

$$f_{x|z}(x|z) = \frac{1}{[2\pi]^{n/2} \sqrt{\det(C_{x|z})}} e^{-\frac{1}{2}(x-m_{x|z})^T C_{x|z}^{-1}(x-m_{x|z})}$$

$$m_{x|z} = E\{x|z\} = m_x + C_{xz}C_z^{-1}(z - m_z)$$

$$C_{x|z} = C_x - C_{xz}C_z^{-1}C_{zx}$$
Proof

\[
\frac{f_{xz}(x, z)}{f_z(z)} = \frac{f_{\bar{z}}(\bar{z})}{f_{\bar{z}}(\bar{z})}, \quad \bar{z} = \text{col}\{x, z\}
\]

\[
\frac{f_{xz}(x, z)}{f_z(z)} = \frac{1}{[2\pi]^{(n+m)/2} \sqrt{\det(C_{\bar{z}})}} e^{-\frac{1}{2}(\bar{z} - m_{\bar{z}})^T C_{\bar{z}}^{-1}(\bar{z} - m_{\bar{z}})}
\]

\[
= \frac{1}{[2\pi]^{m/2} \sqrt{\det(C_z)}} e^{-\frac{1}{2}(z - m_z)^T C_z^{-1}(z - m_z)}
\]

\[
= \frac{1}{[2\pi]^{n/2} \sqrt{\det(C_{\bar{z}}) / \det(C_z)}}
\]

\[
\times \exp\left\{ -\frac{1}{2} (\bar{z} - m_{\bar{z}})^T \begin{bmatrix} A & B \\ B^T & C - C_z^{-1} \end{bmatrix} (\bar{z} - m_{\bar{z}}) \right\}
\]
Proof: Exponent

\(\tilde{z} = \text{col}\{x, z\}, \quad \tilde{z} = z - m_z \)

\[
(\tilde{z} - m_{\tilde{z}})^T \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} (\tilde{z} - m_{\tilde{z}}) - \tilde{z}^T C_z^{-1} \tilde{z}
\]

\[
= (x - m_x)^T A (x - m_x) + 2 (x - m_x)^T B \tilde{z} + \tilde{z}^T C \tilde{z} - \tilde{z}^T C_z^{-1} \tilde{z}
\]

\[
= (\tilde{z} - m_{\tilde{z}})^T \begin{bmatrix} A & B \\ B^T & C - C_z^{-1} \end{bmatrix} (\tilde{z} - m_{\tilde{z}})
\]

\(C_z^{-1} \) changes the \(\tilde{z}^T C \tilde{z} \) term only

• Substitute for

\[
B = -AC_{xz}C_z^{-1}, \quad C = C_z^{-1} + C_z^{-1}C_{zx}AC_{xz}C_z^{-1}
\]
Proof: Expand Quadratic

\[(x - m_x)^T A(x - m_x) - 2(x - m_x)^T A C_{xz} C_z^{-1} \tilde{z} + \tilde{z}^T (C_z^{-1} C_{zx} A C_{xz} C_z^{-1}) \tilde{z}\]

- Simplify \((\tilde{z} = z - m_z)\)

\[(x - m_x - C_{xz} C_z^{-1} \tilde{z})^T A (x - m_x - C_{xz} C_z^{-1} \tilde{z})\]

\[= (x - m_{x|z})^T C_{x|z}^{-1} (x - m_{x|z})\]

\[m_{x|z} = E\{x|z\} = m_x + C_{xz} C_z^{-1} (z - m_z)\]

\[C_{x|z} = A^{-1} = C_x - C_{xz} C_z^{-1} C_{zx}\]
Proof: $\text{det}(C_{x|z})$

$C_{\bar{z}} = \begin{bmatrix} C_x & C_{xz} \\ C_{zx} & C_z \end{bmatrix}$

- Use formula for determinant of a partitioned matrix

$$\text{det}(C_{\bar{z}}) = \text{det}(C_z) \text{det}(C_x - C_{xz}C_z^{-1}C_{zx})$$

$$\frac{\text{det}(C_{\bar{z}})}{\text{det}(C_z)} = \text{det}[C_x - C_{xz}C_z^{-1}C_{zx}] = \text{det}(C_{x|z})$$
Properties of Conditional Mean

- If z is a random vector $\Rightarrow E\{x|z\}$ also random.

Theorem 2: If x and z are jointly Gaussian, then $E\{x|z\}$ is a Gaussian affine transformation of z.

Proof: Follows from the expression (affine)

$$m_{x|z} = E\{x|z\} = m_x + C_{xz}C_z^{-1}(z - m_z)$$

x and z jointly Gaussian $\Rightarrow z$ Gaussian

$\Rightarrow m_{x|z}$ Gaussian
Recursive State Estimation

• Use

$$m_{x|z} = E\{x|z\} = m_x + C_{xz}C_z^{-1}(z - m_z)$$

$$C_{x|z} = C_x - C_{xz}C_z^{-1}C_{zx}$$

i. x replaced by $x_{k|z_{1:k-1}}$

ii. z replaced by z_k
Mean

- Fundamental theorem
 \[m_x = E\{x_k | z_{1:k-1}\} = \hat{x}_k \]

- Measurement
 \[z_k = H_k x_k + v_k \]
 \[m_z = E\{z_k\} = H_k m_x = H_k \hat{x}_k \]
 \[\tilde{z}_k = z_k - H_k \hat{x}_k = H_k e_k + v_k \]
 \[e_k = \tilde{x}_k = x_k - \hat{x}_k \]
Covariance

- Measurements $E\{\tilde{x}_k \nu^T_k\} = [0]$

$$
\tilde{z}_k = z_k - H_k \hat{x}_k^- = H_k \tilde{x}_k + \nu_k \\
C_Z = E\{\tilde{z}_k \tilde{z}_k^T\} = H_k P_k^{-} H_k^T + R_k \\
C_x = E\{\tilde{x}_k \tilde{x}_k^T\} = P_k^{-} \\
C_{xz} = E\{\tilde{x}_k \tilde{z}_k^T\} = P_k^{-} H_k^T \\
C_{zx} = H_k P_k^{-}
$$
Kalman Filter

\[m_{x|z} = m_x + C_{xz}C_z^{-1}(z - m_z) \]

\[P_k^+ = C_{x|z} = C_x - C_{xz}C_z^{-1}C_{zx} \]

• Substitute \(m_x = \hat{x}_k^-, C_x = P_k^- \)

\[C_{xz} = P_k^-H_k^T, C_z = H_kP_k^-H_k^T + R_k, \quad m_z = H_k\hat{x}_k^- \]

\[\hat{x}_k^+ = \hat{x}_k^- + P_k^-H_k^T(H_kP_k^-H_k^T + R_k)^{-1}(z_k - H_k\hat{x}_k^-) \]

\[P_k^+ = P_k^- - P_k^-H_k^T(H_kP_k^-H_k^T + R_k)^{-1}H_kP_k^- \]

• Kalman gain

\[K_k = C_{xz}C_z^{-1} = P_k^-H_k^T(H_kP_k^-H_k^T + R_k)^{-1} \]
Comments

• Kalman filter equation assuming Gaussian noise using the fundamental theorem of estimation theory.
• Linear estimate for Gaussian case without prior assumption.
• For non-Gaussian case the Kalman filter is the minimum variance linear filter but there may be better nonlinear filters.
• If knowledge of the process is incomplete (only up to 2nd order statistics), the Kalman filter is the MMSE estimator but not the minimum variance estimator.
Orthogonality

- x and z are jointly orthogonal if

$$E\{xz^T\} = [0]$$

- Orthogonality principle

For a MMSE estimator, the estimation error vector is orthogonal to the hyperplane of the measurements.

- All measurements used

$$z = \{z_i, i = 0,1, \ldots \}$$
Theorem: Orthogonality

1. If x_k and z are jointly Gaussian, then the estimation error $\hat{x}_{k|k} = x_k - \hat{x}_{k|k}$ is orthogonal to z.

 $$E\{\hat{x}_{k|k} z^T\} = [0]$$

 $$\hat{x}_{k|k} = K^o z + b^o$$

 $$K^o = C_{xz} C_z^{-1}, \quad b^o = m_x - C_{xz} C_z^{-1} m_z$$

2. If (K, b) satisfy $E\{(x_k - Kz - b)z^T\} = [0]$ and $E\{x_k - Kz - b\} = 0$ (unbiased), then $(K, b) = (K^o, b^o)$
Proof of (1)

• The optimum linear estimate is

\[\hat{x}_{k|k} = m_{x|z} = m_x + C_{xz}C_z^{-1}(z - m_z) \]

• To show orthogonality (drop subscript)

\[
E\{ (x - \hat{x}_{k|k})z^T \} = E\{ (x - m_x - C_{xz}C_z^{-1}(z - m_z))z^T \}
\]

\[
= E\{ xz^T \} - m_x E\{ z^T \}
- C_{xz}C_z^{-1}E\{ (z - m_z)(z - m_z)^T \}
- C_{xz}C_z^{-1}E\{ z - m_z \}m_z^T
\]

\[
= C_{xz} - C_{xz}C_z^{-1}C_z - [0] = [0]
\]
Proof of (2)

\[E\{(x - Kz - b)z^T\} = [0], \quad E\{x - Kz - b\} = 0 \]

- The optimum linear estimate satisfies

\[E\{(x - K^o z - b^o)z^T\} = [0], \quad E\{x - K^o z - b^o\} = 0 \]

- Subtract

\[
(K - K^o)E\{zz^T\} + (b - b^o)E\{z^T\} \\
= (K - K^o)(C_z + m_z m_z^T) + (b - b^o)m_z^T = [0] \\
[K - K^o \quad (K - K^o)m_z + b - b^o] \begin{bmatrix} C_z \\ m_z^T \end{bmatrix} = [0] \\
K - K^o = [0] \Rightarrow b - b^o = 0
\]
Example

• First-order Gauss Markov x
 \[R_{xx}(\tau) = \sigma_x^2 e^{-\beta |\tau|} \]

• Measurement
 \[z_k = x_k + v_k, \quad R = E\{v_k^2\} = \sigma_v^2 \]

• Initialization
 \[\hat{x}_0^- = 0, \quad P_0^- = \sigma_x^2 \]

• Initial estimation error
 \[e_0^- = x_0 - \hat{x}_0^- = x_0 \]
Gain

- Gain \(H_k = 1, R = \sigma_v^2 \)

\[
K_k = \frac{P_k^- H_k^T}{H_k P_k^- H_k^T + R} = \frac{P_k^-}{P_k^- + \sigma_v^2}
\]

- Initial Gain

\[
K_0 = \frac{P_0^-}{P_0^- + \sigma_v^2} = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_v^2}
\]

\[
1 - K_0 = \frac{\sigma_v^2}{\sigma_x^2 + \sigma_v^2}
\]
Example (a posteriori error)

• Update estimate $\hat{x}_0^- = 0$

 $$\begin{align*}
 \hat{x}_0^+ &= \hat{x}_0^- + K_0 (z_0 - \hat{x}_0^-) = K_0 z_0 \\
 e_0^+ &= x_0 - \hat{x}_0^+ = x_0 - K_0 z_0 \\
 &= x_0 - K_0 (x_0 + v_0) \\
 e_0^- &= (1 - K_0) x_0 - K_0 v_0 \\
 E\{e_0^+ z_0\} &= (1 - K_0) E\{x_0^2\} - K_0 E\{v_0^2\} \\
 &= \frac{\sigma_v^2}{\sigma_x^2 + \sigma_v^2} \cdot \sigma_x^2 - \frac{\sigma_x^2}{\sigma_x^2 + \sigma_v^2} \cdot \sigma_v^2 = 0
 \end{align*}$$
Example (a priori error)

• Predict using the estimate $\hat{x}_0^+ = K_0 z_0$

 $\hat{x}_1^- = \phi \hat{x}_0^+$

 $e_1^- = x_1 - \hat{x}_1^- = \phi x_0 + w_0 - \phi \hat{x}_0^+$

 $e_1^- = \phi e_0^+ + w_0$

• Orthogonality

 $E \{e_1^- z_0 \} = \phi E \{ e_0^+ z_0 \} + E \{ w_0 z_0 \}$

 $= 0 + 0 = 0$

• Similarly show (by induction)

 $E \{ e_{k+1}^- z_k \} = 0, E \{ e_k^+ z_k \} = 0, k = 0, 1, 2, \ldots$
Measurement Residuals (Innovations)

Residuals: in statistics $z - \hat{z}$

Residuals: one-step ahead prediction errors

$$\tilde{z}_k = z_k - E\{z_k|z_{k-1}^*\}, z_{k-1}^* = \{z_i, i \leq k - 1\}$$

$$= z_k - H_k \hat{x}_k^- = H_k e_k^- + v_k$$

Innovations sequence is

(i) zero-mean (unbiased estimate)

$$E\{\tilde{z}_k\} = H_k E\{e_k^-\} + E\{v_k\} = 0$$

(ii) Gaussian, linear combination of Gaussian

(iii) White: proof requires the Law of Iterated Expectations
Law of Iterated Expectations

\[E\{E\{x \mid y\}\}\) = E\{x\} \] (Outer expectation over \(y \))

Proof

\[E\{E\{x \mid y\}\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x f_{x \mid y}(x \mid y) dx \right] f_y(y) dy \]

\[= \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} f_{x y}(x, y) dy \right] dx \]

\[= \int_{-\infty}^{\infty} x f_x(x) dx = E\{x\} \]
Proof: innovations white

• Consider \(j \leq k - 1 \) with measurements

\[
\mathbf{z}_{k-1}^* = \{ \mathbf{z}_i, i \leq k - 1 \}
\]

• Smoothing Property

\[
E \left\{ \tilde{\mathbf{z}}_k \tilde{\mathbf{z}}_j^T \right\} = E \left\{ E \left\{ \tilde{\mathbf{z}}_k \tilde{\mathbf{z}}_j^T | \mathbf{z}_{k-1}^* \right\} \right\}
\]

• Given \(\mathbf{z}_{k-1}^* \), the term \(\tilde{\mathbf{z}}_j^T, j \leq k - 1 \) can be moved

\[
E \left\{ \tilde{\mathbf{z}}_k \tilde{\mathbf{z}}_j^T \right\} = E \left\{ E \{ \tilde{\mathbf{z}}_k | \mathbf{z}_{k-1}^* \} \tilde{\mathbf{z}}_j^T \right\}
\]
Proof: innovations white

\[E\{\tilde{z}_k \tilde{z}_j^T\} = E\{E\{\tilde{z}_k | z_{k-1}^*\} \tilde{z}_j^T\} \]

\[E\{\tilde{z}_k | z_{k-1}^*\} = E\{((H_k e^-_k + v_k)|z_{k-1}^*) = 0 \]

\[E\{\tilde{z}_k \tilde{z}_j^T\} = [0], \quad j \leq k - 1 \]

• For \(j > k - 1 \), repeat with the transpose to get \([0]\)

\[E\{\tilde{z}_j \tilde{z}_{k-1}^T\} = [0], \quad k - 1 \leq j \]

\[E\{\tilde{z}_k \tilde{z}_j^T\} = [0], \quad j \neq k \]
References