1 Suppose that \(f(z) \) is an entire function and \(|f''(z)| \leq 5 \) for all \(z \in \mathbb{C} \). Show that \(f \) must be of the form \(az^2 + bz + c \) for some constants \(a, b, c \in \mathbb{C} \).

2 The entire function \(\sin(z) \) is equal to 0 at the infinite sequence of points \(0, \pi, 2\pi, 3\pi, \cdots \). Can you use the Uniqueness Principle of analytic functions to conclude that \(\sin(z) \equiv 0 \)? Explain why.

3 Let \(f(z) = \frac{1}{3 - z + z^2} \).
 (a) Find the power series expansion of \(f \) around \(z = 0 \).

 (b) Find the Laurent series expansion of \(f \) around \(z = 1 \).
4 Determine the domain of convergence for the Laurent series \[\sum_{n=\infty}^{-1} \frac{z^n}{n^2} + \sum_{n=0}^{\infty} (z/3)^n. \]

5 Suppose that \(f \) has an isolated singularity at 0 and satisfies \(|f(z)| \leq \frac{1}{|z|} \) in some deleted neighborhood of 0. Show that \(f \) has a removable singularity or a simple pole at 0.

6 Show that if \(z_0 \) is an isolated singularity of \(f(z) \), and if \((z - z_0)^N f(z) \) is bounded in some punctured neighborhood of \(z_0 \) for some positive integer \(N \), then \(z_0 \) is either removable or a pole of order at most \(N \).

7 Show that if \(z_0 \) is an isolated singularity of \(f(z) \), and if \(\lim_{z \to z_0} (z - z_0)f(z) = 0 \), then \(z_0 \) is removable.
8 Find all the singularities of the function \(\frac{(2z-4)e^{(z-1)}}{z^3-4z} \) and identify their types.

9 Use the Residue Theorem to evaluate
\[
\int_{|z|=2} \frac{dz}{(5-z^2)(z^4+1)}.
\]

10 Evaluate the improper integral
\[
\int_{-\infty}^{\infty} \frac{dx}{1+x^2+x^4}.
\]